15,088 research outputs found

    Origin of three-body resonances

    Full text link
    We expose the relation between the properties of the three-body continuum states and their two-body subsystems. These properties refer to their bound and virtual states and resonances, all defined as poles of the SS-matrix. For one infinitely heavy core and two non-interacting light particles, the complex energies of the three-body poles are the sum of the two two-body complex pole-energies. These generic relations are modified by center-of-mass effects which alone can produce a Borromean system. We show how the three-body states evolve in 6^6He, 6^6Li, and 6^6Be when the nucleon-nucleon interaction is continuously switched on. The schematic model is able to reproduce the main properties in their spectra. Realistic calculations for these nuclei are shown in detail for comparison. The implications of a core with non-zero spin are investigated and illustrated for 17^{17}Ne (15^{15}O+p+p). Dimensionless units allow predictions for systems of different scales.Comment: 15 pages, 7 figure

    Square-well solution to the three-body problem

    Get PDF
    The angular part of the Faddeev equations is solved analytically for s-states for two-body square-well potentials. The results are, still analytically, generalized to arbitrary short-range potentials for both small and large distances. We consider systems with three identical bosons, three non-identical particles and two identical spin-1/2 fermions plus a third particle with arbitrary spin. The angular wave functions are in general linear combinations of trigonometric and exponential functions. The Efimov conditions are obtained at large distances. General properties and applications to arbitrary potentials are discussed. Gaussian potentials are used for illustrations. The results are useful for numerical calculations, where for example large distances can be treated analytically and matched to the numerical solutions at smaller distances. The saving is substantial.Comment: 34 pages, LaTeX file, 9 postscript figures included using epsf.st

    Efimov effect in nuclear three-body resonance decays

    Get PDF
    We investigate the effects of the nearly fulfilled Efimov conditions on the properties of three-body resonances. Using the hyper-spheric adiabatic expansion method we compute energy distributions of fragments in a three-body decay of a nuclear resonance. As a realistic example we investigate the 1- state in the halo nucleus 11Li within a three-body 9Li+n+n model. Characteristic features appear as sharp peaks in the energy distributions. Their origin, as in the Efimov effect, is in the large two-body s-wave scattering lengths between the pairs of fragments
    corecore